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Abstract. The kinetic model accounting for speed-memory effects on the spectral line shape proposed in I
[D. Robert, L. Bonamy, Eur. Phys. J. D 2, 245 (1998)] is extended for any density range, within the binary
collision framework. The additional Doppler contribution requires to consider the 3D velocity-memory
function instead of the 1D speed one, with distinct treatments for the velocity-orientation and velocity-
modulus memory mechanisms. Both the collisional confinement narrowing of the Doppler distribution and
the radiator speed-dependence of the collisional broadening and shifting parameters are thus conveniently
taken into account. In the high density regime, this model leads to the same results as in I. At lower
densities, it generalizes the very well-known hard and soft collision models for the Dicke narrowing of the
Doppler distribution, but it also includes the second source of inhomogeneity tied to the speed-dependent
collisional parameters and, concomitantly, the speed class exchanges. Numerical applications to H2−N2

and H2−Ar gaseous mixtures are in close agreement with experiments. This allows one to clearly analyze
the specific role of speed and velocity memory effects on the line profile.

PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.) – 33.70.Jg Line and band
widths, shapes, and shifts

Introduction

High-resolution infrared [1] and Raman [2] spectroscopies
require refined spectral line shape model to account for
all observed features. For instance, for gaseous mixtures
of light molecules with heavy perturbers, drastic changes
arise in the collision regime [3,4] resulting from the inho-
mogeneous effects due to the radiator speed-dependence
of the collisional line broadening and line shifting param-
eters. High temperature enhances such spectral line shape
changes, so that a specific interest lies in their study for di-
agnostics in combusting media [5]. Efficient models based
on the hard collision approximation [3,6] have been pro-
posed to fit accurately such inhomogeneous profiles. In
these models, the crucial parameter is the νSC frequency
of speed-changing collisions which governs the speed class
exchanges. This parameter has been found to be typically
one order of magnitude lower than the velocity chang-
ing collision frequency νVC for H2 in heavy perturbers
mixtures [3,4]. This was recently confirmed by molec-
ular dynamics calculations [7]. In order to understand
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the physical mechanism underlying such a drastic change
from the velocity-changing to the speed-changing colli-
sion frequency, a kinetic model based on a realistic speed
memory function characterized by a unique parameter γ
(0 ≤ γ ≤ 1) has been proposed in reference [8] (labeled I
in the following). It has been demonstrated in I that this
kinetic model well accounts for the observed speed inho-
mogeneous spectral effects in the collision regime (i.e. in
the absence of confinement narrowing [9]), i.e. a non lin-
ear dependence of the line broadening and the line shifting
parameters on perturber concentration, as well as a non
Lorentzian asymmetric profile. It allows one to calculate
the speed-dependent spectral line shapes at high density
from the hard (H) collision approximation [10] (i.e. when
each collision thermalizes the radiator speed) up to the
opposite soft (S) collision one [11] (i.e. when a significant
speed change requires a large number of collisions).

The aim of the present work is to generalize this ki-
netic model to lower densities, when the Doppler contribu-
tion, and the concomitant collisional confinement narrow-
ing [9], can be no longer neglected. Such an intermediate
density range between the pure Doppler and the colli-
sion regime is relevant for many applications, not only in
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combustion but also in atmospheric sciences where the ex-
isting models are frequently not accurate enough [12]. The
main objective is thus the rigorous study of both the colli-
sional confinement narrowing of the Doppler distribution
and the inhomogeneous effects due to the radiator speed-
dependence of the collisional half width γcoll (v) and shift
δcoll (v) on the line shape, within the framework of the
impact kinetic equation [10]. As recently evidenced from
molecular dynamics simulations [13,14], this requires to
introduce distinct treatments for the velocity-orientation
and velocity-modulus memory mechanisms.

Recent works have been devoted to the speed-
dependent line shape problem with Dicke narrow-
ing [15–17]. Starting from a general formalism for solving
the transport/relaxation equation [15], May and coworkers
have performed numerical calculations within the frame of
the rigid sphere approximation for the velocity-changing
collision operator by choosing a quadratic speed depen-
dence for the collisional broadening and shifting param-
eters [16]. The role of the perturber mass, the density,
and the ratio of the optical to kinetic cross-section on the
resulting line shapes was carefully considered. The main
characteristic of this approach is the care to develop a for-
malism free of phenomenological parameters. Results ob-
tained in the hydrodynamic limit (i.e. when the Doppler
shift may be neglected) by Ciurylo et al. [14], have shown
the pertinence of such an approach, through a compar-
ison with molecular dynamic simulation data [7]. In an
other approach including new phenomenological param-
eters [17], the Rautian-Sobelman [10] and Keilson-Storer
(KS) [18] models were used to describe velocity-changing
collisions. Furthermore, the kinetic equation with the KS
model [18] has been solved by Shapiro [19] in order to
analyze the linewidth behavior vs. the radiator velocity-
memory persistence. In these studies [14–18], no distinc-
tion between changes in the magnitude and changes in the
direction of the velocity was done.

The aim of this paper is precisely to study the role of
these two velocity-memory characteristics, in close con-
nection with experimental data for physical situations
where the speed inhomogeneous spectral signatures are so
large that they can be identified without any ambiguity.
Starting from the impact kinetic equation, including the
Doppler contribution with a convenient bi-parametric 3D
radiator velocity-memory function, the expression for the
line shape is established in Section 1. Section 2 is devoted
to a numerical study of the velocity and speed memory
effects on the spectral distribution with applications to
the H2−N2 and H2−Ar systems. Concluding remarks and
discussion are given in Section 3.

1 3D kinetic equation and resulting line shape

The velocity-changing collisions (VC) and dephasing colli-
sions (D) may be a priori considered as statistically inde-
pendent or not, so that these two physical situations will
be examined successively.

1.1 Statistical independence of VC and D collisions

If VC and D collisions are assumed to be statistically in-
dependent, the kinetic impact equation for the radiating
dipole characterized by the velocity �v at time t is [11]

∂

∂t
d(�v, t) ≡ ḋ(�v, t) =

− νV C

[
d(�v, t) −

∫
d�v ′fKS

γ�v
(�v ′, �v)d(�v ′, t)

]

−
[
i�k · �v + γcoll(v) + iδcoll(v)

]
d(�v, t), (1)

where �k is the radiator wave-vector, νV C the velocity-
changing collision frequency (assumed [10] to be �v-
independent), and f(�v ′, �v) the radiator velocity-memory
function for the collisionally induced �v ′ → �v transition.

In order to solve equation (1), we must define perti-
nent eigenfunctions of the 3D integral operator in this
kinetic equation. With this aim, the orientational de-
pendence of the velocity-orientation memory function
(through the scalar product �v · �v ′ = (�v o · �v ′o) vv′) may
be explicited [19] through the expansion of the memory
function in the Legendre polynomials basis {P� (�v ′o, �v o)}

f(�v ′, �v) =
1
2π

∞∑
�=0

1
2
(2� + 1)f�(v′, v)P�(�v ′o, �v o). (2)

If the KS model [18] is chosen to describe this 3D velocity-
memory function, a unique parameter γ�v (0 ≤ γ�v ≤ 1)
thus governs both the speed- and the velocity-orientation
memory. Such an assumption is not realistic for most of
molecular systems as recently shown from molecular dy-
namics simulations [13,14]. A convenient bi-parametric
memory model has been recently introduced [13] in the
following form

fγm,γo(�v
′, �v) = fγm(v′, v) fγo(�v

′o, �v o), (3)

with

fγm(x′, x) = WB(x)
∞∑

n=0

γ2n
m L

1/2

n (x)L
1/2

n (x′),

fγo(�v
′o, �v o) =

1
2π

∞∑
�=0

1
2
(2� + 1)γ�

oP�(�v ′o, �v o), (4)

where x = mv2/2kT . In equation (4), WB(x) means the
Boltzmann average for the speed (cf. Eq. (4) of Ref. [8]),
L

1/2

n (x) are the normalized Laguerre Polynomials defined
in I, and γm, γo are respectively the characteristic param-
eters for modulus- and orientation-velocity memory of the
radiator (0 ≤ γm ≤ 1, 0 ≤ γo ≤ 1). The above memory
model (Eqs. (3) and (4)) for v (≡ |�v|) and �v o (|�v o| = 1)
has been deduced from pertinent averages [13] over ori-
entation and modulus of the radiator velocity within the
frame of the KS model [18]. The corresponding expression
for the �-component of this speed memory function is

f�(x′, x) = WB(x)γ�
o

∞∑
n=0

γ2n
m L

1/2

n (x)L
1/2

n (x′). (5)
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The product of the spherical harmonics Y�,m(�v o) by the

functions L
1/2

n (x) are eigenfunctions of the 3D integral
operator in the kinetic equation (1) for the bi-parametric
memory model (Eqs. (4) and (5)) [20,21]. So, the radia-
tion dipole may be expanded over these Y�,m(�v o

i )L
1/2
n (x)

normalized eigenfunctions

d(�v, t) ≡ d(x,�v o, t)

= WB(x)
∑

n,�,m

an,�,m(t)Y�,m(�v o)L
1/2

n (x), (6)

with

an,�,m(t) =

∞∫
0

dx L
1/2

n (x) d�,m(x, t), (7)

and

d�,m(x, t) =
∫

d�v od(�v, t)Y ∗
�,m(�v o). (8)

From the equilibrium initial condition d (�v, t = 0) =
WB(�v), equations (7) and (8) result in

an,�,m(t = 0) = δn,oδ�,oδm,o. (9)

Taking the Laplace transform of d(t) =
∫

d�v d(�v, t),

d(ω̃) =

∞∫
0

dt eiω̃td(t), (10)

the line profile I(ω̃) is defined by (cf. Eq. (9) of Ref. [8])

I(ω̃) = π−1 Re {ao,o,o(ω̃)} . (11)

Notice that in equations (10) and (11), ω̃ means the de-
tuned frequency from the rovibrational frequency ωo of
the optically active molecule, ω̃ = ω − ωo.

Multiplying the kinetic equation (1) by Y ∗
�,m(�v o)

and integrating over all the orientation �v o leads to (cf.
Eqs. (6–8)),

ḋ�,m(x, t)

+ i∆ωD x1/2 [C�+1,md�+1,m(x, t) + C�,md�−1,m(x, t)]

+
[
νV C + γcoll(x) + iδcoll(x)

]
d�,m(x, t) =

νV C

∫
dx′f�(x′, x)d�,m(x′, t), (12)

where f�(x′, x) is defined by equations (3) and (4) for
the �-component, C�,m = ((�2 − m2)/(2� − 1)(2� + 1))1/2,
∆ωD = (ωo/c)

√
2kT/m is the Doppler frequency distri-

bution and c the light velocity. By using the orthogonality
of the Y�,m(�v o)L

1/2

n (x) eigenfunctions, it is easy to deduce
the resulting equation for the an,�,m(t) components of the

radiating dipole (cf. Eq. (6)),

ȧn,�,m(t) + i∆ωD

[
C�+1,m

∞∑
n′=0

Inn′an′,�+1,m(t)

+C�,m

∞∑
n′=0

Inn′an′,�−1,m(t)

]
+ νV C

(
1−γ2n

m γ�
o

)
an,�,m(t)

+
∞∑

n′=0

Γnn′an′,�,m(t) = 0, (13)

where

Inn′ =

∞∫
0

dxWB(x)L
1/2

n (x)x1/2L
1/2

n′ (x), (14)

and

Γnn′ =

∞∫
0

dxWB(x) L
1/2

n (x)

× [γcoll(x) + iδcoll(x)] L
1/2

n′ (x). (15)

For sufficiently high densities, such that the Doppler con-
tribution becomes negligible (the �k ·�v term in equation (1)
can thus be omitted), the � = 0 component is only to be
considered and thus equation (13) reduces to (17) of I
(with γm substituted to γ). For densities such that the
collisional effects can be neglected, equation (13) leads
straightforwardly to the Gaussian Doppler profile.

In order to simplify the presentation of the numerical
method for the resolution of equation (13), this equation
is rewritten in a condensed form as

ȧn�(t) +
∑
�′=�,
�±1

∞∑
n′=0

W
(�,�′)
nn′ an′�′(t) = 0, (16)

with

W (�,�)
nn =

[
νV C

(
1 − γ2n

m γ�
o

)
δnn′ + Γnn′

]
,

W
(�,�+1)
nn′ = i∆ωDC�+1Inn′ ,

W
(�,�−1)
nn′ = i∆ωDC�Inn′ . (17)

The m index has been omitted in equations (16) and (17),
since the W matrix is diagonal in m and that only the
m = 0 component of the {an′�′m′} coefficients is implied
in the calculation of the spectral line profile I(ω̃) (cf.
Eq. (11)). It is worthy to note that W

(�,�′)
nn′ is an element

of a tridiagonal matrix of (W (�,�+1), W (�,�) and W (�,�−1))
matrices, satisfying the symmetry property

W
(�+1,�)
n′n = W

(�,�+1)
nn′ . (18)

The Laplace transform (Eq. (10)) of equation (16) is

(−iω̃ + W )a(ω̃) = 100, (19)
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where the initial condition a(t = 0) = 100 has been used
(cf. Eq. (9)). If S means the matrix diagonalizing W , the
resulting line profile is

I(ω̃) = π−1 Re{a00(ω̃)}

= π−1

{∑
k

∑
q

S00,kq(S−1)00,kq

iω̃ + Dkq

}
, (20)

where the diagonal D matrix is given by D = S−1 WS.
Due to the tridiagonal structure of the W matrix, an

alternative method may be used which avoids the diago-
nalization procedure. Indeed, from equation (19), it results
that

a00(ω̃) = Re(−iω̃ + W )−1
00,00 ≡ Re W̃−1

00,00, (21)

where W̃ (ω̃) = W −iω̃. The determination of the diagonal
matrix element n = 0, � = 0 of the inverse matrix W̃−1

only requires that of the column of matrices (�, 0) in W̃−1.
These matrices W̃−1(�,0) (� = 0, ..., �max) can be directly
expressed from the known W̃ (0,0)−1 and W̃ (0,1) matrices
by using a generalization of the forward and backward
substitution methods [22] for tridiagonal matrix to tridi-
agonal matrix of matrices (Appendix A).

In practice the �max value, corresponding to the trun-
cation procedure (Eq. (A.5)), must be chosen to insure
the numerical convergence for a00(t) (Eqs. (13) and (16))
whatever the method used (diagonalization or substitu-
tion, cf. supra). Furthermore, in each block matrix W (�,�′),
the n maximum value must also be fixed from pertinent
tests. This second truncature was discussed in I for the
1D case. These technical points concerning the choice of
�max and nmax, in connection with the convergence of the
solution of the kinetic equation, will be carefully analyzed
in the next section through the study of the H2−N2 and
H2−Ar systems.

1.2 Statistical dependence of VC and D collisions

In the case where the velocity-changing (VC) and dephas-
ing (D) collisions are considered as statistically dependent
[10], the following kinetic equation must be substituted to
equation (1)

ḋ(�v, t) = −νV C [d(�v, t) −
∫

d�v ′fγm,γo(�v
′, �v )d(�v ′, t)]

− [i�k · �v + γcoll(v) + iδcoll(v)]
∫

d�v ′fγm,γo(�v
′, �v )d(�v ′, t),

(22)

where fγm,γo(�v
′, �v) is given by equations (3) and (4). By

using the same expansion for d(�v, t) as in Section 2.1 (cf.
Eq. (6)), the resulting kinetic equation for the correspond-
ing an,�,m(t) expansion coefficients is formally identical to
equation (16) with the following modification

W
(�,�)
nn′ =

[
νV C(1 − γ2n

m γ�
o)δnn′ + γ2n′

m γ�
oΓnn′

]
, (23)

where Inn′ and Γnn′ are defined through equations (14)
and (15) respectively. The only change with respect to
equation (13) induced by the statistical dependence of
VC and D collision is thus the presence of the γ2n′

m γ�
o

term in the last number of equation (23) (cf. Eq. (17)).
Consequently, all the numerical procedure proposed in
Section 2.1 to get the spectral line shape (cf. Eqs. (11)
and (20)) remains pertinent and will be used in the follow-
ing section to analyze the role of this VC and D statistical
dependence.

2 Numerical study of velocity memory effects
on H2−N2 and H2−Ar line shapes

This study is divided in two main parts. The first one
concerns a comparison between experimental results and
the present bi-parametric approach for a physical system
H2−N2 of practical interest. The second part is devoted
to an extensive study of the influence of the two memory
parameters on the spectral lineshape characteristics (line
broadening and line asymmetry).

2.1 Comparison to H2−N2 experimental data

To test the numerical approach described in the previ-
ous section, the H2−N2 system will be analyzed in detail.
This molecular system exhibits strong inhomogeneous ef-
fects for high densities due to the lightness of H2 molecule
and its anharmonicity [23]. It is also of particular interest
for optical diagnostic in combustion engines [5,24]. Exper-
iments for highly diluted H2 in N2 have been performed by
high resolution Inverse Raman Spectroscopy at the Uni-
versity of Dijon for various densities lying between 0.2
(Doppler regime) and 11 amagat (collision domain), and
three temperatures (296, 795 and 1200 K) [25]. To explain
the important role of both velocity memory parameters
(γm for speed and γo for orientation), we show in Fig-
ure 1 the comparison between experimental line widths
measured in Dijon University and calculated ones using
the mono-parametric KS memory function vs. density ρ
at 296 K (cf. Sect. 2.1, Eq. (13) and Ref. [26] with γ
substituted to γm). Similar curves are obtained at 795 K
and 1200 K. From previous studies [2–4], the speed mem-
ory parameter plays an important role in the collisional
regime (typically for densities higher than a few amagat
units). In the opposite case corresponding to Dicke and
Doppler regimes, the orientation velocity memory param-
eter is dominant. The curves reported in Figure 1 fully
confirm these assumptions. The agreement between ex-
perimental and simulated values is consistently satisfac-
tory at high density using the unique memory parameter
γ = 0.92 (solid line), and at low density with γ = 0 (dotted
line) (cf. Fig. 1). As obtained by molecular dynamic sim-
ulations [13], the expected parameters for such a H2−N2

system are equal to 0.92 for the γm speed memory and to
0.41 for the γo orientation velocity one. For intermediate
densities (Dicke regime), this mono-parametric approach
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Fig. 1. The observed linewidth Γ obs of the H2 Q(1) line ob-
tained with 5% of H2 in 95% of N2 is plotted vs. density ρ
(shaded circles) at 296 K and compared with the line broaden-
ing calculated from the monoparametric KS memory function
(cf. Eq. (13) with γ substituted to γm) for γ = 0.92 (solid line)
and γ = 0 (dotted line). The collisional line broadening γcoll×ρ
(dashed line) is also reported.

cannot reproduce accurately the experimental line broad-
ening. It is then clear that two distinct memory parame-
ters are necessary to be able to describe all the lineshapes
observed for a very large domain of temperature, concen-
tration and density using a unique profile modelization.

The same comparison for the H2−N2 system is pre-
sented in Figure 2 vs. density ρ using now the bi-
parametric approach presented in this paper with no
statistical correlation between VC and D collisions (cf.
Sect. 2.1, Eq. (13)). The agreement between experimental
and calculated line widths is very good for all densities
studied. It is important to note that no fitting procedure
is performed here. The values used for the memory param-
eters (γo = 0.41 and γm = 0.92) are directly deduced from
the molecular dynamic simulations [13]. To improve this
agreement, it would be possible to fit the memory param-
eters from the available experimental data [23,25]. The
resulting values would be too close from those obtained
from molecular dynamics to justify such a procedure in
this case. This result is a further drastic test of the simu-
lation made by molecular dynamics in reference [13]. We
can note that a similar agreement is obtained for the two
other temperatures (T = 795 and 1200 K).

2.2 Influence of the two memory parameters (speed
modulus and orientation) on spectral line shapes

We choose to test the accuracy of the bi-parametric ap-
proach and specially the influence of both memory param-
eters (γo for orientation and γm for modulus) on the line
profiles. In this study, we used the H2−Ar system which
exhibits even stronger inhomogeneous effects than for
H2−N2, due to the presence of a heavier perturber [2,4].
Line widths are reported for different values of γo and γm

Fig. 2. The observed linewidths Γ obs of the H2 Q(1) line
are compared with the line broadening calculated from the
biparametric extended KS memory function (cf. Eq. (13)) for
γm = 0.92 and γo = 0.41 (solid line) vs. density ρ at 296 K and
5% of H2 in 95% of N2. For comparison, the results obtained
with the monoparametric KS memory function (Ref. [26]) are
also reported for γ = 0.41 (dashed line) and γ = 0.92 (dotted
line). The collisional line broadening γcoll × ρ (dotted-dashed
line) is also reported.

memory parameters at two characteristic density regimes
in Figure 3 (Dicke: Fig. 3a and collisional ones: Fig. 3b),
with the assumption of statistical independence of VC and
D collisions (cf. Sect. 1.1). As expected, we have verified
the speed memory parameter (γm) has nearly no influ-
ence at low density. The behaviour is opposite at high
density (cf. Fig. 3b), where it is the speed memory which
only governs the inhomogeneous broadening. At interme-
diate density (Fig. 3a) both γm and γo play a significant
role for H2−Ar. That should be no longer the case for
heavy active molecules exhibiting a γm value below 0.5.
In this case, only orientation memory becomes pertinent
as usually known in the Dicke regime [9]. The present bi-
parametric approach confirms the previous H2−X data
analysis [2,4] in terms of velocity memory mechanisms.
Notice the strong increase of the inhomogeneous part of
the line broadening at 10 amagat (Fig. 3b) when the speed
memory parameter (γm) is close to its maximum value 1.
Let us recall that the inhomogeneous part for H2−Ar at
density higher than few amagat units is of the same or-
der of magnitude as the collisional part, and cannot be
neglected. For H2 in mixtures with heavy perturbers, this
inhomogeneous effect must be taken into account for an
accurate high pressure thermometry based on Coherent
Anti-Stokes Spectroscopy (CARS) [5,24]. A last comment
should be made on the collision regime (Fig. 3b). For most
molecular systems, (except light optically active molecules
with heavy perturbers) from molecular dynamics simula-
tions [7,13], it is expected that γm < 0.5. Consequently,
the apparent broadening is thus nearly independent of
both γm and γo. However, notice that for γo close to 1,
which corresponds to the soft memory process [10,11],
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(a)

(b)

Fig. 3. Calculated line broadening coefficient for H2 (5%)
— Q(1) line perturbed by argon (95%) at 300 K vs. orien-
tation memory parameter (γo) and speed memory parameter
(γm) using the biparametric extended KS memory function (cf.
Eqs. (13)). (a) Dicke regime (d = 1 amagat) and (b) collisional
regime (d = 10 amagat). The full circle corresponds to the cal-
culated value by using the values γm = 0.96 and γo = 0.21
resulting from the simulation [13].

the present calculation (Fig. 3b) predicts an orientation
velocity memory inhomogeneous broadening.

The second point of interest concerns the correlation
effect on spectral lineshapes. As explained in the previ-
ous part, the velocity-changing collisions and dephasing
collisions may be considered as statistically independent
or not. In this part, we propose to discuss the statisti-
cal dependence effect on spectral lineshape. As shown in

Fig. 4. Calculated line broadening for H2 (5%) — Q(1) line
perturbed by argon (95%) at 300 K and 10 amagat vs. ori-
entation memory parameter (γo) and speed memory parame-
ter (γm). Comparison between statistical independence of VC
and D collisions using the bipamaretric extended KS approach
(cf. Eqs. (13) and (14)) and statistical dependence ones (cf.
Eq. (23)). The full circle corresponds to the calculated value
by using the values γm = 0.96 and γo = 0.21 resulting from
the simulation [13].

the previous studies [3,6,27], the statistical dependence
between VC and D collisions remains without any sig-
nificant effect on the observed line width in the collision
regime (high density) and when inhomogeneous effects are
strong (γm ≥ 0.8), i.e. for H2−X systems where X is an
heavy perturber. We have reported in Figure 4 the cal-
culated line widths obtained by correlated and non corre-
lated approaches at high density (10 amagat). It is clear
that for high values of speed modulus memory parame-
ter (γm ≥ 0.8), no differences between the two calcula-
tions can be observed. In this case, the inhomogeneous ef-
fect due to the speed dependence of collisional parameters
is predominant to the statistical dependence effects. The
main differences arise for low values of γm corresponding
to small inhomogeneous effect on line profiles, regardless
of the γo value. Indeed, at high density, the speed ori-
entational memory parameter plays no significant role in
the speed memory processes. For VC and D correlated
collisions, the observed line broadening tends to the col-
lisional one for decreasing values of the γm parameter.
In the opposite case (non correlated collisions), a differ-
ence of 10 to 15% is still observed with the collisional
line broadening value [3]. These last results are interest-
ing for systems involving heavy active molecules like H2O
or CO. In this case, inhomogeneous effects are negligible
(γm lower than 0.5) compared to correlations between VC
and D collisions which would have a significant role on the
spectral lineshape signature. For intermediate densities,
the influence of modulus memory parameter decreases,
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(a)

(b)

Fig. 5. Calculated asymmetry for H2 (5%) — Q(1) line per-
turbed by argon (95%) at 300 K vs. orientation memory param-
eter (γo) and speed memory parameter (γm) using the bipara-
metric extended KS memory function (cf. Eqs. (13) and (14)).
(a) Dicke regime (d = 1 amagat) and (b) collisional regime
(d = 10 amagat). The full circle corresponds to the calculated
value by using the values γm = 0.96 and γo = 0.21 resulting
from the simulation [13].

calculated line broadenings are nearly identical with the
two approaches (correlation and non correlation). At low
density regime, the two memory parameters have no sig-
nificant influence. The line profile is described by the
Gaussian Doppler profile, not depending on the correla-
tion of VD and D collisions.

Fig. 6. The experimental asymmetry parameter A of the H2

Q(1) line obtained with 5% of H2 and 95% of Ar is plotted
vs. density ρ (shaded circles) at 296 K and compared with
the asymmetry parameter calculated using the non correlated
biparametric extended KS memory function (solid line). The
memory parameters γm = 0.96 and γo = 0.21 are deduced
from simulation [13].

The last point of interest is the behavior of the line
shape asymmetry in each density regime. We defined the
asymmetry parameter A as A = [νLF + νHF − 2 νmax]/Γ
where νHF and νLF are the high and low frequencies
at half maximum respectively, νmax the frequency at the
maximum intensity and Γ the HWHM. The asymmetry,
obtained from the calculation of the profiles with the non
correlated extended biparametric KS approach is reported
in Figure 5. First, it is interesting to note that, at low
density (sub-Dicke) regime, the asymmetry coefficient be-
comes independent of the two velocity memory parameters
and is close to 0 for most of (γm, γo) values except for γm

and/or γo close to 1. The line profile must be symmetric
at very low density since it is Gaussian in the Doppler
regime. We have tested this specific point through calcu-
lations at d = 0.01 amagat (not reported here). In the col-
lision regime (i.e. above few amagat units), the asymme-
try becomes, as expected, density-independent. As for the
line broadening (Fig. 3b), the line asymmetry (Fig. 5) only
depends on γm (except for γo close to 1) in this regime.
In the Dicke regime, the asymmetry parameter becomes
strongly dependent on the velocity orientation parameter.
The speed memory has nearly no influence on the value of
the asymmetry, except for γm values close to 1. For H2−Ar
mixture at 296 K, we show in Figure 6 the comparison
between experimental data [2,4] and calculated values of
the asymmetry parameter for the γm and γo data resulting
from the simulation [13]. Some instabilities are observed
due to the difficulty to extract asymmetry parameter from
experimental data. Nevertheless, the agreement remains,
as for the broadening, (cf. Fig. 2), still satisfactory.
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3 Conclusion

We present in this paper an extension, for any density
range, of the 1D kinetic model [8] accounting not only for
speed-memory effects on the spectral line shape but also
for the Doppler contribution. This model is built via two
distinct velocity memory parameters (γo for orientation
and γm for modulus). A comparison between experimen-
tal data (line broadening and asymmetry) and calculated
ones from this new bi-parametric extended KS approach
has been performed. It shows a very good agreement for
the systems H2−N2 and H2−Ar. These molecular systems
are of particular interest for a rigorous tests of this ap-
proach since they present strong inhomogeneous effects at
high density. To test the model, calculations have been
performed for all the validity domain of the two memory
parameters (speed γm and orientation γo lying between
0 and 1). This study allows us to fully analyze all the
inhomogeneous effects from the Doppler to the collision
regime. This fully confirms all the previous studies [23,25]
and introduces further the possibility to discriminate the
inhomogeneous contribution in terms of speed memory
and velocity orientation ones. As a consequence, this new
bi-parametric model of line shape should apply to vari-
ous molecular systems and at any density range consis-
tent with the binary collision approximation. In the aim
of applications for optical diagnostic in combustion media
or in atmospheric environments, this approach could be
used to increase the accuracy of such optical techniques.
In the case of the earth atmosphere, the velocity orien-
tation memory can be dominant. This contrasts with the
H2−X systems at higher density studied here, where this
is the velocity modulus memory which plays the domi-
nant role in the line shape. Recent results obtained by a
group in Orsay University for H2O perturbed by N2 at
subatmospheric pressure show typical behaviors not yet
explained [28]. A collaboration with this group is now be-
ginning to try to interpret these results through mem-
ory effects using the present bi-parametric extended KS
model. New approaches to describe the speed dependent
laws of collisional parameters (line broadening and line
shifting) applied to this model are in progress in the aim
to study atmospheric molecular systems, particularly the
influence of the correlation on the spectral lineshapes.

The authors greatly acknowledge H. Berger and F. Chaussard,
from University of Dijon (France), for providing them experi-
mental spectra.

Appendix A: Forward and backward
substitution method for a tridiagonal
matrix of matrices

Due to the tridiagonal structure of the W̃ matrix, (cf.
Eqs. (15), (17) and (18)) it can be shown by an elimination
method that the block (�, 0) in the W̃−1 matrix must obey

the following recurrence relation

[
W̃−1

](�,0)

= S(�) − T (�)
[
W̃−1

](�+1,0)

, (A.1)

where the couple of matrices (S(�), T (�)) are also obtained
from recurrence relations

S(�) = [W̃ (�,�−1)T (�−1) − W̃ (�,�)]−1 W̃ (�,�−1)S(�−1), (A.2)

and

T (�) = [W̃ (�,�−1)T (�−1) − W̃ (�,�)]−1 W̃ (�,�+1), (A.3)

with the initial conditions

S(0) = [W̃ (0,0)]−1, T (0) = [W̃ (0,0)]−1 W̃ (0,1). (A.4)

Notice that [W̃ (0,0)]−1 means the inverse of the (0, 0)
block matrix in the known (total) matrix W̃ (cf. Eqs. (17)
and (18)), which corresponds to the 1D case of I in the
absence of the Doppler contribution in the kinetic equa-
tion (1). This matrix being of infinite order (both in �
and in n), we first introduce a maximum value �max for �
through a truncation procedure defined by

W̃ (�max,�max+1) = 0. (A.5)

From this truncation, it follows that

W̃ (�max−1,�max)
[
W̃−1

](�max−1,0)

+ W̃ (�max,�max)
[
W̃−1

](�max,0)

= 0. (A.6)

Accounting for equation (A.6) in equation(A.1) for � =
�max − 1 permits to deduce the [W̃−1](�max−1) matrix,
since it is easy to show, through an identification with
equation (A.2) for � = �max, that

[
W̃−1

](�max,0)

= S(�max). (A.7)

This forward substitution starting from the initial condi-
tions (A.4), allows one to built all the S(�) and T (�) ma-
trices for � going from 0 to �max − 1, plus the S(�max) one
(the T (�max) being zero due to the truncation (A.5)). A
further backward substitution starting from [W̃−1](�max,0)

is thus done from the recurrence relation (A.1) to get all
the [W̃−1](�,0) block matrices for � going from �max to
0, as required to numerically solve equations (16) or (22)
through equations (20) and (21).
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